Throughout the history of the oboe, popular rhetoric has assessed it as “an ill wind that no one blows good” as well as the most difficult instrument to play. Truthfully, there is nothing more difficult about playing the oboe than any other instrument, but because most directors have first-hand experience with poor-sounding oboes in rehearsals and concerts, they are reluctant to have these “ill winds” in their ensemble. Some avoid teaching the instrument altogether. Learning how to troubleshoot typical problems associated with oboe playing and reed making can reduce frustration for both directors and students.

Identifying Problems

There are a large number of variables that confront oboe players. These variables include tenon cork fit, bridge alignment, adjustment mechanism, rods and keys that bend, condensation, grime, cracks, and most notably, the double reed; and a lot can go wrong with each one. For directors who have little experience with the instrument, figuring out what is going on with a malfunctioning oboe can be frustrating. Here are some reasons why oboists might struggle and why some notes may simply not work.

Tenon Cork

A firm connection between the top joint and bottom joints of an oboe is important for the instrument to function correctly, but unfortunately the tenon cork that makes this connection can easily compress and wear down over time. Even if the instrument is not played much, the tenon cork can lose moisture, causing it to shrink. When the top and bottom joints lack a firm connection, the instrument wobbles while a student plays it, causing the adjustment mechanism to shift and make many notes unplayable. This problem typically comes and goes as the connection shifts in and out of position.

To check an oboe for this connection, first assemble the instrument. Next, hold the bottom joint firmly and push the top joint forward and back. There should be no movement between the joints. If there is movement, the tenon cork should be repaired. For temporary help, cut a small piece of paper the same width and length of the tenon on the top joint and wrap it around the tenon. Carefully reassemble the instrument while watching to be sure the paper does not shift off the cork. The paper will degrade quickly, so this technique is good only as a short-term solution to the problem.

Adjustment Mechanism

When looking at an oboe, the amount of key work can seem astonishing. The mechanism of the oboe is com-
structured through relationships between what are called primary keys and secondary keys. After a player depresses a primary key, secondary keys move up or down as well. The relationships between primary and secondary keys are regulated through minute turns of various adjustment screws. Even the slightest imbalance between the primary and secondary key relationships can cause notes to sound fuzzy or to not sound at all. Difficulty producing low notes or a delayed response to articulation can indicate that the instrument is out of adjustment.

Learning to adjust an oboe is a useful skill that takes some patience and the help of an oboe adjustment guide. Several excellent editions of these publications are available, such as A Method for Adjusting the Oboe and English Horn by Carl Sawicki or Oboe Adjustment Guide by J. Patrick McFarland. When working through this process, turn the adjustment screws in tiny increments, the distance equivalent to about one minute if you are looking at the face of a clock. Do not allow young students to adjust their instrument without help, because they do not have the fine-motor skills necessary to do this.

Bridge Alignment

For the adjustment mechanism to function correctly, the bridge key on the right side of the instrument should be perfectly aligned. After the right side is aligned, the left side might be significantly misaligned. Misalignment on the left side is fine and will not have any mechanical effect.

Fragile Mechanism

The key work and mechanism of rods and posts on oboes are extremely sensitive to pressure. Keys are prone to bending, so players have to handle them with care, avoiding unnecessary pressure or stress. When assembling the oboe, grasp only the primary keys and avoid touching any rods. Lubricate the tenons and the reed cork with cork grease and then assemble the instrument using only gentle pressure. When resting the oboe on the lap or any surface, keep the keys facing up, and do not allow the instrument to rest on the group of keys on the left side (low B and B♭, A♭, left F, and left E♭). This part of the mechanism is particularly prone to bending and damage.

Condensation

Tone holes easily trap condensation, which then accumulates in the vent holes on the side and back octave keys.
Competition Solo Series
Available at dealers now!

A full range of solos chosen from state contest lists across the country, written by Floyd O. Harris and Edmund J. Siennicki for each of the twelve principal wind instruments and mallet percussion. These books feature Play-Along CDs with demonstrations by professional soloists on one track and piano accompaniment on the next track. A separate piano accompaniment book includes some solos in two keys and will work for any instrument in each compilation.

Book 1 (Grades 1 – 2)
The Young Prince, Viennese Sonatina
No. 1, Flower of the Orient, The King’s
Jester, Two Short Pieces, Spirit of Victory,
Barcarolle and Scherzetto, Sparkles,
Waltz from Album for the Young

Book 2 (Grades 2 – 3)
Harvest Waltz, Happy Song, The Rooster,
The Swan, Little Caesar, The Tortoise and
the Hare, Gavotte, Dance of the Bears,
Cripple Creek

Book 3 (Grades 3 – 4)
Dancing Silhouettes, Viennese Sonatina
No. 4 Rondo, Polka from The Bartered
Bride, Brass Bangle, Ocean Beach Valse,
Caprice, Evening in the Country

Ludwig Masters Publications
6403 West Rogers Circle • Boca Raton, FL 33487
(800) 434-6340 • (561) 241-6169
Fax: (561) 241-6347 • www.ludwigmasters.com

Frederick Fennell & Lincolnshire Posy
Over two and one-half hours of Frederick Fennell rehearsing the U.S. Navy Band in
preparation of the first performance of his critical edition of Lincolnshire Posy for the
1987 Midwest Clinic. A must see video for any conductor who is planning to program
Grainger’s masterpiece or just for the joy of watching a master at work.

This amazing two disc DVD set is presented by The Association of Concert Bands
for only $57.00 (including shipping)
Order from our website at www.acbands.org using Paypal or
Mail your check or money order to:
ACB Project Posy
3600 West Congress Street
Lafayette, LA 70506

For more information email: windband@bellsouth.net

of the oboe. These holes are closest to the top of the instrument where the air
is the warmest and moistest. Accumu-
lated condensation can cause a gur-
gling sound or a note to speak in the
lower octave.

If a student has any difficulty playing
in the second octave, blow strongly
across the octave key tone holes at the
top of the instrument. Ungummed cig-
arette paper is helpful to whisk away
moisture. If octave condensation is fre-
quently a problem, ask an oboe repair
technician to remove and clean the
octave vents. Condensation can accu-
mulate in other tone holes and will
sometimes greatly affect the pitch. An
F might sound an E and a C might
sound a B.

Swabbing

Consistent swabbing of the instru-
ment with silk pull-through swabs
removes condensation so it does not
accumulate. Some oboists avoid swab-
because they think the swab will
get stuck inside the instrument. To
avoid this, hold the oboe upside down
and drop the weighted end of the swab
through the bell. Gently shake the
obo until the weight comes through
out the top joint through the reed well.
Slowly pull the swab through the
instrument and watch the entire length
of the swab as it enters through the bell
so that it does not twist or knot. Once
the swab is inside the instrument, you
can pull it more quickly.

If the swab suddenly becomes more
difficult to pull, stop pulling imme-
ately. Take the instrument apart and
gently pull the swab back toward the
bell. If the swab does not move easily,
do not pull on it. Instead, directors
might try a thin and smooth metal rod
to push it out. If the swab seems tight-
ly stuck, then take it to an instrument
repair technician.

The oboe should be swabbed after
every time it is played. Sometimes stu-
dents with plastic oboes mistakenly
believe that only wooden oboes need
to be swabbed because plastic does not
crack, but it is equally important to
swab a plastic oboe to remove conden-
sation and reduce grime.

Grime

Accumulated grime may prevent an
obo from working correctly. Look
down the bore of the instrument and
check to see whether it is smooth and
shiny. A rough appearance means
there is grime that needs to be
removed with a swab. Sometimes so
much grime accumulates that it col-

32 THE INSTRUMENTALIST / MARCH 2010
lects in the tone holes and makes certain notes out of tune or altogether absent. After swabbing a filthy instrument, wash the swab in warm water with a mild detergent. Open up the swab so it is flat and can air dry on a flat surface.

After many summers of teaching at middle school music camps, I have learned to always look down into the bore of an instrument for dirt before volunteering my best swab to a student. The amount of grime waiting to be removed can be staggering. When an instrument is loaded with grime, I talk to the parents of the student about cleaning or swabbing it at home. Never use any kind of liquid to clean an oboe, because it will cause damage to the cork and skin pads.

The Top-Joint Suction Test

The top joint of an oboe should be free from cracks and warped pads for the instrument to function correctly. To test for this, take the top joint and press down the B, A, and G keys with the left hand; next place the palm of the right hand firmly across the opening of the tenon and suck all of the air out of the top joint, forming a tight seal between the upper lip and the palm of your hand. Ideally, this seal should hold for at least seven seconds. If the suction is weak, a pad could be cracked or warped, or in the case of a wooden instrument, a crack could be present. Wood oboes that have cracked should be immediately repaired by an oboe repair technician.

Students should not attempt to play a cracked instrument, because the air flow and condensation can cause the crack to expand and immediately become more severe. Cracks are often very thin and hard to see, making them difficult to identify. They might be entirely covered by key work and not visible until a technician removes the keys. Cracks are typically repaired by pinning, although minor cracks are sometimes repaired with glue. The most common place for an oboe to crack is between the two trill keys on the upper joint, because of the tiny amount of space between them. If you suspect a crack, try looking for it under a bright light at the trill keys.

Instrument Selection

Beginning-model wood oboes are not always the best choice to purchase. The quality of wood on these instruments does not make them sound better than resin or plastic models; prone to leaks and cracks, wood instruments quickly become liability. Wood oboes require special care and should be played consistently, so they are not a practical choice for most school programs where students might not be careful with them or the instruments sit in storage during the summer and are not played regularly. There are many high-quality resin and plastic oboes that are particu-
ularly well suited as school instruments and are a better choice.

The term full conservatory is often used to describe intermediate and professional oboes. Full conservatory means that all of the standard keys such as low B♭, left F, and F resonance are included. There are expensive intermediate oboes that lack important keys, such as left F and low B♭, and are not full conservatory models. I recommend avoiding these instruments all together.

Finding a Good Reed

Many oboe reeds that are available for purchase are unsuitable for players at any level because they do not function correctly. When students play on a poor-quality reed, they do not make adequate progress with good air flow, embouchure, tone, intonation, dynamics, articulation, or vibrato.

Many student oboists assume that if their reed produces any sound, then it is fine. Consequently, as they notice that their sound is louder and more raucous than the other instruments, they become frustrated. All potential for an acceptable tone quality and intonation is built into the reed. Students should learn how to recognize the characteristics of a good reed from their first lessons because that information is an important component of oboe playing.

Growing the Reed

Try this quick reed test to determine if an oboe reed is suitable for playing. Put all of the cane in your mouth so the lips touch only the thread. Take a slow and deep breath through the mouth and then blow strongly to produce a robust sound. The reed should respond immediately, vibrate freely, and have the pitch of C in two octaves.

If the reed is flat in pitch or if the sound is wobbly and unstable, then adjust or discard it. This process is
called crowing the reed, and it gives oboists important information about how well the reed is working. Once placed in the oboe, a reed's qualities become magnified, so if it does not play well on its own, it will be impossible to play the oboe well either. Crow a variety of reeds until you find one that easily crow octaves Cs. If a reed does not crow, the problem is the reed and not the player.

Reed Characteristics

One characteristic to listen for in a reed is an immediate response. If a high-pitched chirping sound precedes the tone or if students are reluctant to articulate with their tongue on the very tip of the reed, then there is a problem with the response of the reed.

When looking at the profile of the reed, the two blades of the reed should stay tightly together all the way to the tip. If the blades split apart even slightly, the reed will not respond well and can chirp. This type of reed problem is typically caused by a warp in the cane and cannot be fixed.

A reed should respond to air and articulation without any delay. If there is a delay in response, the very tip might need thinning or the reed might be leaking air through the sides. Learning basic reed adjustment techniques can benefit students greatly. Sometimes a couple of small scrapes of the cane can make an unusable reed into a good one. Basic reed adjustment can be learned through short summer workshops, books, or DVDs.

Handmade Reeds

I encourage students at every level to play on handmade reeds instead of machine-made reeds, which usually play flat and have a loud, unfocused sound. Most oboists quickly find a good source for handmade reeds, then eventually learn to make their own. Local music stores rarely stock handmade reeds or even oboe supplies, forcing student players to find specific specialty shops that are scattered throughout the country.

A great variety of high-quality handmade reeds and other oboe supplies are available through the internet and mail-order catalogs, and private oboe teachers often have them for sale. Students should try reeds from a variety of sources. Although handmade reeds can cost more than twice as much as machine-made reeds, they last much longer and are absolutely worth the investment.
Adapting to a Handmade Reed

Students who switch to handmade reeds at first may not like them because they feel uncomfortable to play. Although better in quality, these reeds have more resistance and require greater air flow, and some students are sensitive to the increased sensation of the vibration on their lips.

Ask students to take in a slow and full breath and blow on the reed only for a few brief periods, a few seconds at a time. After a few days of blowing on just the reed, it will no longer feel too resistant to play, and the correct embouchure muscles will begin to develop. Most players make this transition quickly.

Playing Sharp

In a recent masterclass with 18 high school oboists, everyone—from all-state musicians to students who had played for two months—acknowledged playing excessively sharp. This is something many oboists struggle with.

There are two primary reasons for sharp pitch: the reed is flat or the embouchure is inflexible. Sometimes the embouchure is not flexible because it has become accustomed to playing on flat reeds.

It seems counterintuitive that oboists play sharp when their reeds are flat, but there is good reason for it. When the reed crown is lower than a C, the player responds to this flatness by pinching or biting the reed. The ear is much more sensitive to flatness than to sharpness and is inclined to make this adjustment. Pinching the reed will bring the pitch higher, but the pitch center is unstable and uncontrollable. There is no good way to consistently pinch the reed, and consequently, the correct pitch is not sustainable. Players overshoot the pitch, which becomes excessively sharp.

Nora Lewis is assistant professor of music at Kansas State University where she teaches oboe and music history and performs with the Konza Winds. She previously taught at Austin Peay State University in Tennessee and was a member of the editorial staff of The Instrumentalist. During the summers Lewis is on the faculty of the Blue Lake Fine Arts Camp in Twin Lake, Michigan.

New Hybrid Online/Summer Master of Music in Music Education

Spend your summer in beautiful Idaho!

You don’t have to quit your day job to get a master’s degree!

For more information contact:

Dr. Lorie Enloe
lenloe@uidaho.edu
208-885-0157
www.class.uidaho.edu/music_education

University of Idaho

At North Central College, being well-rounded doesn’t mean losing your musical edge.

First-Year Visit Days:
Saturday, April 10, 2010
Transfer Visit Days:
Saturday, April 24, 2010
Scholarship Audition Dates:
Saturday, March 6, 2010

Our students choose from majors in music, music education or jazz studies and also pursue countless other passions.

Find out more by calling 630-637-5800.
Or visit us online at www.northcentralcollege.edu.

NORTH CENTRAL COLLEGE • 30 N. BRAINARD STREET • NAPERVILLE, ILLINOIS • 630-637-5800